基于RF-LR改进算法的疾病辅助诊断软件的研究与设计
这是一篇关于疾病预测,特征选择,代价敏感,随机森林,逻辑回归的论文, 主要内容为近年来,随着“健康中国”政策的提出,医疗健康问题受到社会广泛关注。由于当前社会存在着医疗资源分配不均,城乡医疗服务水平悬殊的现象,所以疾病辅助诊断领域的研究与应用具有重要的实际意义。目前疾病辅助诊断领域存在着疾病预测算法精确度不够高,预测算法未考虑到疾病误诊代价以及传统疾病辅助诊断软件开发工具落后等问题。本文针对上述研究现状,提出了基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型,使用真实的医疗数据对算法进行测试分析,基于改进的算法设计并实现了疾病辅助诊断软件。本文的主要工作如下:1.建立基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型。针对疾病预测算法精确率有待提高的问题,使用基于随机森林和序列后向搜索策略的特征选择方法,消除数据集中的冗余特征,提高算法的精确率。针对疾病误诊代价问题,使用代价敏感学习方法,在逻辑回归的损失函数中加入代价权重参数,通过选择最优权值参数,降低疾病误诊所带来的代价。使用真实的医疗数据,将改进后的算法同逻辑回归、决策树、支持向量机进行预测效果的对比。测试结果证明,与其他算法相比,本文的疾病预测算法的性能表现较好,精确率、召回率和F1值分别为89.3%、86.8%、88%。2.对疾病辅助诊断软件进行分层设计,将软件分为表示层、控制层、业务逻辑层、数据持久层和数据层,同时使用B/S架构模式进行软件搭建。根据软件的需求分析,采用Struts、Spring、Hibernate(SSH)框架进行软件的设计与实现。疾病辅助诊断软件的功能包括用户注册及登录、用户管理、疾病预测、疾病咨询、科普推送等功能,同时将改进的预测算法应用在疾病预测功能中。3.搭建疾病辅助诊断软件测试环境,根据疾病辅助诊断软件的功能需求,按照国家软件质量测试标准,对软件进行测试。测试包括软件功能测试、软件兼容性测试以及软件性能测试。通过上述的测试来验证软件功能的有效性和可用性。根据测试结果,软件能够满足用户对疾病辅助诊断的需求,同时软件符合国家软件标准,软件在不同的浏览器中都能够稳定运行和使用。
基于RF-LR改进算法的疾病辅助诊断软件的研究与设计
这是一篇关于疾病预测,特征选择,代价敏感,随机森林,逻辑回归的论文, 主要内容为近年来,随着“健康中国”政策的提出,医疗健康问题受到社会广泛关注。由于当前社会存在着医疗资源分配不均,城乡医疗服务水平悬殊的现象,所以疾病辅助诊断领域的研究与应用具有重要的实际意义。目前疾病辅助诊断领域存在着疾病预测算法精确度不够高,预测算法未考虑到疾病误诊代价以及传统疾病辅助诊断软件开发工具落后等问题。本文针对上述研究现状,提出了基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型,使用真实的医疗数据对算法进行测试分析,基于改进的算法设计并实现了疾病辅助诊断软件。本文的主要工作如下:1.建立基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型。针对疾病预测算法精确率有待提高的问题,使用基于随机森林和序列后向搜索策略的特征选择方法,消除数据集中的冗余特征,提高算法的精确率。针对疾病误诊代价问题,使用代价敏感学习方法,在逻辑回归的损失函数中加入代价权重参数,通过选择最优权值参数,降低疾病误诊所带来的代价。使用真实的医疗数据,将改进后的算法同逻辑回归、决策树、支持向量机进行预测效果的对比。测试结果证明,与其他算法相比,本文的疾病预测算法的性能表现较好,精确率、召回率和F1值分别为89.3%、86.8%、88%。2.对疾病辅助诊断软件进行分层设计,将软件分为表示层、控制层、业务逻辑层、数据持久层和数据层,同时使用B/S架构模式进行软件搭建。根据软件的需求分析,采用Struts、Spring、Hibernate(SSH)框架进行软件的设计与实现。疾病辅助诊断软件的功能包括用户注册及登录、用户管理、疾病预测、疾病咨询、科普推送等功能,同时将改进的预测算法应用在疾病预测功能中。3.搭建疾病辅助诊断软件测试环境,根据疾病辅助诊断软件的功能需求,按照国家软件质量测试标准,对软件进行测试。测试包括软件功能测试、软件兼容性测试以及软件性能测试。通过上述的测试来验证软件功能的有效性和可用性。根据测试结果,软件能够满足用户对疾病辅助诊断的需求,同时软件符合国家软件标准,软件在不同的浏览器中都能够稳定运行和使用。
基于RF-LR改进算法的疾病辅助诊断软件的研究与设计
这是一篇关于疾病预测,特征选择,代价敏感,随机森林,逻辑回归的论文, 主要内容为近年来,随着“健康中国”政策的提出,医疗健康问题受到社会广泛关注。由于当前社会存在着医疗资源分配不均,城乡医疗服务水平悬殊的现象,所以疾病辅助诊断领域的研究与应用具有重要的实际意义。目前疾病辅助诊断领域存在着疾病预测算法精确度不够高,预测算法未考虑到疾病误诊代价以及传统疾病辅助诊断软件开发工具落后等问题。本文针对上述研究现状,提出了基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型,使用真实的医疗数据对算法进行测试分析,基于改进的算法设计并实现了疾病辅助诊断软件。本文的主要工作如下:1.建立基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型。针对疾病预测算法精确率有待提高的问题,使用基于随机森林和序列后向搜索策略的特征选择方法,消除数据集中的冗余特征,提高算法的精确率。针对疾病误诊代价问题,使用代价敏感学习方法,在逻辑回归的损失函数中加入代价权重参数,通过选择最优权值参数,降低疾病误诊所带来的代价。使用真实的医疗数据,将改进后的算法同逻辑回归、决策树、支持向量机进行预测效果的对比。测试结果证明,与其他算法相比,本文的疾病预测算法的性能表现较好,精确率、召回率和F1值分别为89.3%、86.8%、88%。2.对疾病辅助诊断软件进行分层设计,将软件分为表示层、控制层、业务逻辑层、数据持久层和数据层,同时使用B/S架构模式进行软件搭建。根据软件的需求分析,采用Struts、Spring、Hibernate(SSH)框架进行软件的设计与实现。疾病辅助诊断软件的功能包括用户注册及登录、用户管理、疾病预测、疾病咨询、科普推送等功能,同时将改进的预测算法应用在疾病预测功能中。3.搭建疾病辅助诊断软件测试环境,根据疾病辅助诊断软件的功能需求,按照国家软件质量测试标准,对软件进行测试。测试包括软件功能测试、软件兼容性测试以及软件性能测试。通过上述的测试来验证软件功能的有效性和可用性。根据测试结果,软件能够满足用户对疾病辅助诊断的需求,同时软件符合国家软件标准,软件在不同的浏览器中都能够稳定运行和使用。
基于RF-LR改进算法的疾病辅助诊断软件的研究与设计
这是一篇关于疾病预测,特征选择,代价敏感,随机森林,逻辑回归的论文, 主要内容为近年来,随着“健康中国”政策的提出,医疗健康问题受到社会广泛关注。由于当前社会存在着医疗资源分配不均,城乡医疗服务水平悬殊的现象,所以疾病辅助诊断领域的研究与应用具有重要的实际意义。目前疾病辅助诊断领域存在着疾病预测算法精确度不够高,预测算法未考虑到疾病误诊代价以及传统疾病辅助诊断软件开发工具落后等问题。本文针对上述研究现状,提出了基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型,使用真实的医疗数据对算法进行测试分析,基于改进的算法设计并实现了疾病辅助诊断软件。本文的主要工作如下:1.建立基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型。针对疾病预测算法精确率有待提高的问题,使用基于随机森林和序列后向搜索策略的特征选择方法,消除数据集中的冗余特征,提高算法的精确率。针对疾病误诊代价问题,使用代价敏感学习方法,在逻辑回归的损失函数中加入代价权重参数,通过选择最优权值参数,降低疾病误诊所带来的代价。使用真实的医疗数据,将改进后的算法同逻辑回归、决策树、支持向量机进行预测效果的对比。测试结果证明,与其他算法相比,本文的疾病预测算法的性能表现较好,精确率、召回率和F1值分别为89.3%、86.8%、88%。2.对疾病辅助诊断软件进行分层设计,将软件分为表示层、控制层、业务逻辑层、数据持久层和数据层,同时使用B/S架构模式进行软件搭建。根据软件的需求分析,采用Struts、Spring、Hibernate(SSH)框架进行软件的设计与实现。疾病辅助诊断软件的功能包括用户注册及登录、用户管理、疾病预测、疾病咨询、科普推送等功能,同时将改进的预测算法应用在疾病预测功能中。3.搭建疾病辅助诊断软件测试环境,根据疾病辅助诊断软件的功能需求,按照国家软件质量测试标准,对软件进行测试。测试包括软件功能测试、软件兼容性测试以及软件性能测试。通过上述的测试来验证软件功能的有效性和可用性。根据测试结果,软件能够满足用户对疾病辅助诊断的需求,同时软件符合国家软件标准,软件在不同的浏览器中都能够稳定运行和使用。
基于RF-LR改进算法的疾病辅助诊断软件的研究与设计
这是一篇关于疾病预测,特征选择,代价敏感,随机森林,逻辑回归的论文, 主要内容为近年来,随着“健康中国”政策的提出,医疗健康问题受到社会广泛关注。由于当前社会存在着医疗资源分配不均,城乡医疗服务水平悬殊的现象,所以疾病辅助诊断领域的研究与应用具有重要的实际意义。目前疾病辅助诊断领域存在着疾病预测算法精确度不够高,预测算法未考虑到疾病误诊代价以及传统疾病辅助诊断软件开发工具落后等问题。本文针对上述研究现状,提出了基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型,使用真实的医疗数据对算法进行测试分析,基于改进的算法设计并实现了疾病辅助诊断软件。本文的主要工作如下:1.建立基于随机森林与逻辑回归(RF-LR)改进算法的疾病预测模型。针对疾病预测算法精确率有待提高的问题,使用基于随机森林和序列后向搜索策略的特征选择方法,消除数据集中的冗余特征,提高算法的精确率。针对疾病误诊代价问题,使用代价敏感学习方法,在逻辑回归的损失函数中加入代价权重参数,通过选择最优权值参数,降低疾病误诊所带来的代价。使用真实的医疗数据,将改进后的算法同逻辑回归、决策树、支持向量机进行预测效果的对比。测试结果证明,与其他算法相比,本文的疾病预测算法的性能表现较好,精确率、召回率和F1值分别为89.3%、86.8%、88%。2.对疾病辅助诊断软件进行分层设计,将软件分为表示层、控制层、业务逻辑层、数据持久层和数据层,同时使用B/S架构模式进行软件搭建。根据软件的需求分析,采用Struts、Spring、Hibernate(SSH)框架进行软件的设计与实现。疾病辅助诊断软件的功能包括用户注册及登录、用户管理、疾病预测、疾病咨询、科普推送等功能,同时将改进的预测算法应用在疾病预测功能中。3.搭建疾病辅助诊断软件测试环境,根据疾病辅助诊断软件的功能需求,按照国家软件质量测试标准,对软件进行测试。测试包括软件功能测试、软件兼容性测试以及软件性能测试。通过上述的测试来验证软件功能的有效性和可用性。根据测试结果,软件能够满足用户对疾病辅助诊断的需求,同时软件符合国家软件标准,软件在不同的浏览器中都能够稳定运行和使用。
基于张量的数据中心能耗预测研究
这是一篇关于数据中心,特征选择,代价敏感,张量,注意力机制的论文, 主要内容为随着云计算和物联网应用的持续发展,数据中心的规模也在逐渐扩大。随之而来的则是数据中心能耗的大幅增长,这不仅对数据中心的管理造成了巨大影响,更会造成一系列环境问题。目前,基于能耗感知的调度策略是常见的能耗控制技术之一,为了辅助实施基于能耗感知的调度策略并降低数据中心能耗,本文对数据中心的能耗预测问题进行了深入研究。我们在搭建了小型数据中心并进行数据采集的基础上,针对数据中心能耗预测的代价不平衡问题,采用代价敏感策略有针对性地调整能耗预测曲线的偏移程度以适用于高能耗预测场景。代价敏感策略的应用使得模型的预测性能更好,从而有助于提高整体服务水平。此外,本文还为数据中心不同类型任务挑选关键特征,并结合所设计的代价敏感损失函数,提出了基于张量的双阶段注意力机制的长短期记忆网络能耗预测模型。相比当前的主流时序预测模型,本文所提出的模型可以有效地对数据的时序模式和特征相关性进行建模,能更好地捕捉数据中心能耗波动并提高预测准确率。最后,本文开发了一套数据中心能耗预测系统,该系统基于Spring Cloud微服务架构,并集成了本文研究的能耗预测算法。该系统能为数据中心管理人员提供稳定可靠的能耗预测服务,提高数据中心调度与管理效率。
本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:毕业设计货栈 ,原文地址:https://bishedaima.com/lunwen/47232.html