5个研究背景和意义示例,教你写计算机预报系统论文

今天分享的是关于预报系统的5篇计算机毕业论文范文, 如果你的论文涉及到预报系统等主题,本文能够帮助到你 选矿生产指标预测系统的设计与实现 这是一篇关于选矿生产,变量选择

今天分享的是关于预报系统的5篇计算机毕业论文范文, 如果你的论文涉及到预报系统等主题,本文能够帮助到你

选矿生产指标预测系统的设计与实现

这是一篇关于选矿生产,变量选择,神经网络,指标预测,预报系统的论文, 主要内容为选矿过程即为将矿山开采的原矿石经过生产加工,使得有用矿物富集的流程工业过程。选矿过程成功将有用矿物和脉石充分分离,生产出的精矿为钢铁行业提供重要的原材料。选矿过程通常包括原矿筛分、竖炉焙烧、磨矿、磁选、浮选等工艺过程,其中各个工序所涉及的衡量不同产品质量或生产效率的指标,称为工艺指标;而衡量一天或一个班组时间内完成的整个选矿全流程的指标,称为选矿全流程生产指标;生产工况条件表示生产工序中相关设备所涉及的原料的台时处理量、设备运行时间及后续的设备台时产量等约束条件。其中精矿作为选矿过程的终极产品,其质量的好坏将直接影响选矿厂的经济效益。而选矿工艺过程相对复杂,无法实现综合精矿产量的在线实时检测。现阶段选矿厂通常采用离线统计方式对综合精矿产量进行检测。随着选矿工艺的不断优化,传统的方式已不再满足选矿厂对精矿产量实时检测的要求。因此有必要实现一种综合精矿产量的实时预报方法。由此,选矿厂可实现对精矿产量的实时获取,并依据结果及时优化调整工序过程指标和操作变量,从而实现整个选矿厂的效益最大化。目前虽然算法研究人员也会根据自身需求开发预测软件,但这些软件的交互性、可复用性以及实用性相对较差,通常为某一工艺过程量身设定,平台的可复用性有待提高。因此有效的将理论研究成功应用于选矿过程制造执行系统,并将预测平台服务化,将会极大丰富选矿过程制造执行系统平台软件的功能,同时为其他算法研究人员提供服务化平台设计思路。随着互联网技术的不断发展,相比于传统的客户端服务方式,web系统显得更加灵活、方便且易用。不需用户安装任何程序原件,随时随地都可通过浏览器访问系统。部署在服务器上的web系统可以租用的方式满足任何企业需求,系统的维护也变得相对简单。建立基于web技术的服务化软件平台,必将可以更好的服务于选矿工业。本文依托国家高技术研究发展计划(863计划)课题“基于物联网的选矿生产执行系统技术研究与示范应用”,根据需求设计开发了用于选矿生产综合铁精矿产量预报的软件平台,并将研究理论成功应用于我国西部某大型选矿厂。论文主要包括以下工作:(1)对选矿生产指标预报方法及系统的研究现状做了详细的分析。并针对选矿工艺过程的典型特点,对选矿生产指标预报系统的实现进行了详细的需求分析,包括:功能需求、性能需求以及系统的运行需求。(2)针对选矿生产指标预报的问题,本文提出一种灰色关联分析和改进随机权神经网络的选矿生产指标预测方法,采用基于PCA和基于灰色关联的变量选择方法来选择模型输入,采用基于随机权神经网络和基于改进随机权神经网络的模型建立四种指标预测方法。并采用工业实际数据进行仿真实验验证,实验结果表明本文所提方法的有效性。该方法在运行时间代价不大的前提下,充分满足了选矿厂对指标预测精度的要求。(3)设计开发了安全、可靠的选矿生产指标预报系统。对系统的整体架构、软件架构以及功能架构进行了详细的设计。系统功能模块主要包括系统管理模块、基础信息模块以及指标预测三大功能模块。前端开发采用“vue+webpack”框架并通过“html+Javascript+css”语言实现、后端预报算法服务采用ASP.NET Web Api封装服务并通过c#调用matlab封装的dll文件实现、后端数据服务采用Spring+Spring Mvc+Mybatis的java开源框架封装服务并通过java语言实现。该系统的实现充分考虑内部数据的交互性、开发平台的可复用性以及用户操作的友好性,采用前后端分离的开发技术,将后端代码封装成restful风格服务供前端平台调用。系统前端实现充分应用Element封装的强大的组件库,实现了系统稳定、友好的运行。(4)以酒钢选矿厂实际生产数据为依据对选矿生产指标预报系统进行了实际验证。通过对指标预报模块中特征提取及指标预报模块基本功能的验证,证明系统指标预报模块实现的有效性;通过对基础信息及系统管理中各个模块基本功能的验证,证明了系统基础服务及系统安全功能实现的有效性。

长江三峡中长期径流预报研究及其系统设计与开发

这是一篇关于三峡水库,径流中长期预报,小波分析,回归分析,预报系统的论文, 主要内容为水文径流要素由于受到气候、地理条件及人类活动等因素影响,其变化规律错综复杂具有很强的不确定性,除此之外灰色性、模糊性和混沌性等一些复杂特性也存在于该系统中。为了使相关决策部门和领导能够更加及时的统筹安排,获取诸如水力发电、防洪抗旱、蓄水供水等方面更大的经济和社会效益,更加准确地预测未来的径流过程,特别是中长期的径流预报,此时就显得格外关键。 本文在中长期径流预报理论研究现状和发展趋势及其系统软件设计开发的基础上,提出了结合小波分析的中长期径流组合预报方法,通过将原始径流序列进行分解与重构,并结合较为成熟的多元线性回归模型、自回归模型、最近邻抽样回归模型以及支持向量机模型,实现了较为精确的中长期径流预报,并针对三峡流域径流预报的实际工程问题,应用长江三峡流域宜昌站年平均径流资料对模型方法进行检验,实例研究表明,本文提出的组合预测方法较为有效,可以显著的提高预报精度。 为了使长江三峡中长期径流预报研究成果更好的满足生产单位的需求,改善其作业预报的水平和精度,本文设计开发了具有水文历史数据的管理、检索和查询、径流过程预测与人机交互管理等功能的长江三峡中长期径流预报软件。该软件采用模块化设计,扩展性好,人机界面友好,易于操作。水文信息查询模块实现了降雨、径流及设计洪水等水文数据信息的实时查询功能,同时通过将这些数据录入水文预报专用数据库,实现了水文数据的快速检索及实时更新功能。水文统计分析模块通过对年月径流量进行频率计算和统计特性分析,可使用户方便快捷的得到径流年内年际的统计特性及趋势和周期特性。中长期预报模块由多种预报模型组成,包括多元线性回归模型、自回归小波模型、最近邻抽样回归小波模型等。在常规模型基础上引入小波分析方法,更好的反映了径流的变化特性,使得模型预报效果得到了极大的提高,为三峡梯级防洪和发电调度系统提供了良好的数据支持。

选矿生产指标预测系统的设计与实现

这是一篇关于选矿生产,变量选择,神经网络,指标预测,预报系统的论文, 主要内容为选矿过程即为将矿山开采的原矿石经过生产加工,使得有用矿物富集的流程工业过程。选矿过程成功将有用矿物和脉石充分分离,生产出的精矿为钢铁行业提供重要的原材料。选矿过程通常包括原矿筛分、竖炉焙烧、磨矿、磁选、浮选等工艺过程,其中各个工序所涉及的衡量不同产品质量或生产效率的指标,称为工艺指标;而衡量一天或一个班组时间内完成的整个选矿全流程的指标,称为选矿全流程生产指标;生产工况条件表示生产工序中相关设备所涉及的原料的台时处理量、设备运行时间及后续的设备台时产量等约束条件。其中精矿作为选矿过程的终极产品,其质量的好坏将直接影响选矿厂的经济效益。而选矿工艺过程相对复杂,无法实现综合精矿产量的在线实时检测。现阶段选矿厂通常采用离线统计方式对综合精矿产量进行检测。随着选矿工艺的不断优化,传统的方式已不再满足选矿厂对精矿产量实时检测的要求。因此有必要实现一种综合精矿产量的实时预报方法。由此,选矿厂可实现对精矿产量的实时获取,并依据结果及时优化调整工序过程指标和操作变量,从而实现整个选矿厂的效益最大化。目前虽然算法研究人员也会根据自身需求开发预测软件,但这些软件的交互性、可复用性以及实用性相对较差,通常为某一工艺过程量身设定,平台的可复用性有待提高。因此有效的将理论研究成功应用于选矿过程制造执行系统,并将预测平台服务化,将会极大丰富选矿过程制造执行系统平台软件的功能,同时为其他算法研究人员提供服务化平台设计思路。随着互联网技术的不断发展,相比于传统的客户端服务方式,web系统显得更加灵活、方便且易用。不需用户安装任何程序原件,随时随地都可通过浏览器访问系统。部署在服务器上的web系统可以租用的方式满足任何企业需求,系统的维护也变得相对简单。建立基于web技术的服务化软件平台,必将可以更好的服务于选矿工业。本文依托国家高技术研究发展计划(863计划)课题“基于物联网的选矿生产执行系统技术研究与示范应用”,根据需求设计开发了用于选矿生产综合铁精矿产量预报的软件平台,并将研究理论成功应用于我国西部某大型选矿厂。论文主要包括以下工作:(1)对选矿生产指标预报方法及系统的研究现状做了详细的分析。并针对选矿工艺过程的典型特点,对选矿生产指标预报系统的实现进行了详细的需求分析,包括:功能需求、性能需求以及系统的运行需求。(2)针对选矿生产指标预报的问题,本文提出一种灰色关联分析和改进随机权神经网络的选矿生产指标预测方法,采用基于PCA和基于灰色关联的变量选择方法来选择模型输入,采用基于随机权神经网络和基于改进随机权神经网络的模型建立四种指标预测方法。并采用工业实际数据进行仿真实验验证,实验结果表明本文所提方法的有效性。该方法在运行时间代价不大的前提下,充分满足了选矿厂对指标预测精度的要求。(3)设计开发了安全、可靠的选矿生产指标预报系统。对系统的整体架构、软件架构以及功能架构进行了详细的设计。系统功能模块主要包括系统管理模块、基础信息模块以及指标预测三大功能模块。前端开发采用“vue+webpack”框架并通过“html+Javascript+css”语言实现、后端预报算法服务采用ASP.NET Web Api封装服务并通过c#调用matlab封装的dll文件实现、后端数据服务采用Spring+Spring Mvc+Mybatis的java开源框架封装服务并通过java语言实现。该系统的实现充分考虑内部数据的交互性、开发平台的可复用性以及用户操作的友好性,采用前后端分离的开发技术,将后端代码封装成restful风格服务供前端平台调用。系统前端实现充分应用Element封装的强大的组件库,实现了系统稳定、友好的运行。(4)以酒钢选矿厂实际生产数据为依据对选矿生产指标预报系统进行了实际验证。通过对指标预报模块中特征提取及指标预报模块基本功能的验证,证明系统指标预报模块实现的有效性;通过对基础信息及系统管理中各个模块基本功能的验证,证明了系统基础服务及系统安全功能实现的有效性。

选矿生产指标预测系统的设计与实现

这是一篇关于选矿生产,变量选择,神经网络,指标预测,预报系统的论文, 主要内容为选矿过程即为将矿山开采的原矿石经过生产加工,使得有用矿物富集的流程工业过程。选矿过程成功将有用矿物和脉石充分分离,生产出的精矿为钢铁行业提供重要的原材料。选矿过程通常包括原矿筛分、竖炉焙烧、磨矿、磁选、浮选等工艺过程,其中各个工序所涉及的衡量不同产品质量或生产效率的指标,称为工艺指标;而衡量一天或一个班组时间内完成的整个选矿全流程的指标,称为选矿全流程生产指标;生产工况条件表示生产工序中相关设备所涉及的原料的台时处理量、设备运行时间及后续的设备台时产量等约束条件。其中精矿作为选矿过程的终极产品,其质量的好坏将直接影响选矿厂的经济效益。而选矿工艺过程相对复杂,无法实现综合精矿产量的在线实时检测。现阶段选矿厂通常采用离线统计方式对综合精矿产量进行检测。随着选矿工艺的不断优化,传统的方式已不再满足选矿厂对精矿产量实时检测的要求。因此有必要实现一种综合精矿产量的实时预报方法。由此,选矿厂可实现对精矿产量的实时获取,并依据结果及时优化调整工序过程指标和操作变量,从而实现整个选矿厂的效益最大化。目前虽然算法研究人员也会根据自身需求开发预测软件,但这些软件的交互性、可复用性以及实用性相对较差,通常为某一工艺过程量身设定,平台的可复用性有待提高。因此有效的将理论研究成功应用于选矿过程制造执行系统,并将预测平台服务化,将会极大丰富选矿过程制造执行系统平台软件的功能,同时为其他算法研究人员提供服务化平台设计思路。随着互联网技术的不断发展,相比于传统的客户端服务方式,web系统显得更加灵活、方便且易用。不需用户安装任何程序原件,随时随地都可通过浏览器访问系统。部署在服务器上的web系统可以租用的方式满足任何企业需求,系统的维护也变得相对简单。建立基于web技术的服务化软件平台,必将可以更好的服务于选矿工业。本文依托国家高技术研究发展计划(863计划)课题“基于物联网的选矿生产执行系统技术研究与示范应用”,根据需求设计开发了用于选矿生产综合铁精矿产量预报的软件平台,并将研究理论成功应用于我国西部某大型选矿厂。论文主要包括以下工作:(1)对选矿生产指标预报方法及系统的研究现状做了详细的分析。并针对选矿工艺过程的典型特点,对选矿生产指标预报系统的实现进行了详细的需求分析,包括:功能需求、性能需求以及系统的运行需求。(2)针对选矿生产指标预报的问题,本文提出一种灰色关联分析和改进随机权神经网络的选矿生产指标预测方法,采用基于PCA和基于灰色关联的变量选择方法来选择模型输入,采用基于随机权神经网络和基于改进随机权神经网络的模型建立四种指标预测方法。并采用工业实际数据进行仿真实验验证,实验结果表明本文所提方法的有效性。该方法在运行时间代价不大的前提下,充分满足了选矿厂对指标预测精度的要求。(3)设计开发了安全、可靠的选矿生产指标预报系统。对系统的整体架构、软件架构以及功能架构进行了详细的设计。系统功能模块主要包括系统管理模块、基础信息模块以及指标预测三大功能模块。前端开发采用“vue+webpack”框架并通过“html+Javascript+css”语言实现、后端预报算法服务采用ASP.NET Web Api封装服务并通过c#调用matlab封装的dll文件实现、后端数据服务采用Spring+Spring Mvc+Mybatis的java开源框架封装服务并通过java语言实现。该系统的实现充分考虑内部数据的交互性、开发平台的可复用性以及用户操作的友好性,采用前后端分离的开发技术,将后端代码封装成restful风格服务供前端平台调用。系统前端实现充分应用Element封装的强大的组件库,实现了系统稳定、友好的运行。(4)以酒钢选矿厂实际生产数据为依据对选矿生产指标预报系统进行了实际验证。通过对指标预报模块中特征提取及指标预报模块基本功能的验证,证明系统指标预报模块实现的有效性;通过对基础信息及系统管理中各个模块基本功能的验证,证明了系统基础服务及系统安全功能实现的有效性。

三维槽型断屑机理及预报的研究

这是一篇关于三维槽型,断屑机理,切屑约束,预报系统的论文, 主要内容为金属切削在高度自动化和无人参与的情况下,向着提高金属切除率方向发展。这需要非常可靠的切削加工过程。但由于连续切削中的切屑控制问题,自动生产线或单机设备的非正常停机率相当高,严重影响其效能的发挥。随着各类三维槽型刀片的广泛应用,合理选用刀片槽型并准确预报其切削性能成为解决上述问题的关键。 本文在已有的研究成果基础上,通过对三维槽型车刀片断屑机理及基于网络的断屑预报系统的研究,为实现连续切削中切屑的有效控制奠定坚实的基础。主要研究内容包括: 首先,本文进行了三维槽型车刀片断屑槽型结构的研究,根据切屑控制理论与Colwell法则,获得了构成三维槽型车刀片断屑槽的六种典型槽型的等效断屑槽型参数,建立了四种典型槽型断屑效应的评价模型。 其次,从对三维槽型车刀片断屑槽型的数学描述入手,在已取得的三维槽型车刀片切屑形成与折断机理的研究成果基础上,进行了三维槽型对切屑形成与流动约束作用的研究,建立了三维槽型对切屑约束作用点及切屑卷曲方向角的预报模型,实现了四种典型槽型对切屑约束作用点及切屑卷曲方向角的预报。 采用最大应变理论,建立了基于三维槽型对切屑约束作用的切屑流动、卷曲与折断预报模型,实现了三维槽型切屑上向卷曲半径和横向卷曲半径的预报。从而为基于网络的断屑预报系统的研制奠定了理论基础。 针对切屑形成、卷曲与折断过程的复杂性、不确定性和模糊性,以已有的切削试验为基础,建立了基于半经验预报模型的切屑折断矩阵。 最后,采用Java语言的JSP技术和基于数据驱动控制的双向推理机制,建立了基于网络的断屑预报系统,实现了基于网络的多用户同时访问与切屑折断在线预报。 以上研究为进行刀片槽型优化设计及具有自主知识产权的三维复杂槽型车刀片产品的开发提供了依据。

本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:毕设驿站 ,原文地址:https://bishedaima.com/lunwen/50858.html

相关推荐

发表回复

登录后才能评论