面向工业智能的知识管理与算法开放平台设计与实现
这是一篇关于工业智能,预测性维护,知识管理,算法开放,学习平台的论文, 主要内容为随着国家大力推动新一代信息技术与制造业的融合,工业互联网快速发展,预测性维护作为工业智能的关键技术,是典型的大数据、AI赋能制造业的应用场景,市场广阔,是领域内的杀手级应用,而目前掌握预测性维护技术的相关人才却寥寥无几,人才缺口巨大,一个原因是由于行业门槛相对较高,另一个原因是市面上面向工业智能领域的教学平台较少,适合新人上手的更是寥寥无几,而且目前高校内也缺少相应的培养体系和课程。针对此现状,本论文提出面向工业智能的知识管理与算法开放平台设计与实现,为工业智能领域的初学者提供一个知识学习、数据管理、算法体验与开放的一站式学习平台,为工业APP的开发者提供一种新型的端到端的开发模式,引导其快速熟悉行业知识。本论文从软件开发的基本流程出发,给出背景调研、研究现状、需求分析、相关技术研究、平台设计与实现、系统测试与验证等章节,并逐步介绍平台完整的开发流程。功能设计方面,与论文题目相对应,首先设计了用于知识管理的教程与项目模块和数据集模块这两个功能模块,教程与项目模块用于展示工业智能领域相关技术、算法、案例、项目等教程,为初学者提供了一个知识获取的平台。数据集模块提供数据集下载、在线图形化展示、数据集上传功能,为用户提供数据管理功能;此外,平台设计了用于算法开放的算法库模块和API模块,并且基于这两个模块开创性地提出了一种新型的端到端开发模式,工业APP的开发者在本地调试好算法后,在算法库模块上传算法并自动生成API,然后基于API模块的API文档去调用相应算法得到处理结果,这样基于平台提供的类似云端功能,将开发者的算法发布到线上,结合微信小程序等客户端,开发者不需要搭建后端服务器就可以开发自己的工业APP。功能实现方面,平台整体基于Java语言开发,框架采用SSM(Spring+SpringMVC+Mybatis)框架,数据库的使用方面,选择MySQL作为平台存储数据的主要数据库,同时使用Redis存储文件存储路径、训练结果等信息,并选择Redis作为缓存使用。算法计算同时基于Java环境下的Weka和Python环境下的scikit-learn库和tensorflow库,平台使用这些算法库构建了一套算法引擎,支撑平台算法库模块和API模块所有的算法计算功能,同时使用RabbitMq消息队列异步处理复杂计算请求,改善用户体验。
面向工业智能的知识管理与算法开放平台设计与实现
这是一篇关于工业智能,预测性维护,知识管理,算法开放,学习平台的论文, 主要内容为随着国家大力推动新一代信息技术与制造业的融合,工业互联网快速发展,预测性维护作为工业智能的关键技术,是典型的大数据、AI赋能制造业的应用场景,市场广阔,是领域内的杀手级应用,而目前掌握预测性维护技术的相关人才却寥寥无几,人才缺口巨大,一个原因是由于行业门槛相对较高,另一个原因是市面上面向工业智能领域的教学平台较少,适合新人上手的更是寥寥无几,而且目前高校内也缺少相应的培养体系和课程。针对此现状,本论文提出面向工业智能的知识管理与算法开放平台设计与实现,为工业智能领域的初学者提供一个知识学习、数据管理、算法体验与开放的一站式学习平台,为工业APP的开发者提供一种新型的端到端的开发模式,引导其快速熟悉行业知识。本论文从软件开发的基本流程出发,给出背景调研、研究现状、需求分析、相关技术研究、平台设计与实现、系统测试与验证等章节,并逐步介绍平台完整的开发流程。功能设计方面,与论文题目相对应,首先设计了用于知识管理的教程与项目模块和数据集模块这两个功能模块,教程与项目模块用于展示工业智能领域相关技术、算法、案例、项目等教程,为初学者提供了一个知识获取的平台。数据集模块提供数据集下载、在线图形化展示、数据集上传功能,为用户提供数据管理功能;此外,平台设计了用于算法开放的算法库模块和API模块,并且基于这两个模块开创性地提出了一种新型的端到端开发模式,工业APP的开发者在本地调试好算法后,在算法库模块上传算法并自动生成API,然后基于API模块的API文档去调用相应算法得到处理结果,这样基于平台提供的类似云端功能,将开发者的算法发布到线上,结合微信小程序等客户端,开发者不需要搭建后端服务器就可以开发自己的工业APP。功能实现方面,平台整体基于Java语言开发,框架采用SSM(Spring+SpringMVC+Mybatis)框架,数据库的使用方面,选择MySQL作为平台存储数据的主要数据库,同时使用Redis存储文件存储路径、训练结果等信息,并选择Redis作为缓存使用。算法计算同时基于Java环境下的Weka和Python环境下的scikit-learn库和tensorflow库,平台使用这些算法库构建了一套算法引擎,支撑平台算法库模块和API模块所有的算法计算功能,同时使用RabbitMq消息队列异步处理复杂计算请求,改善用户体验。
面向工业智能的知识管理与算法开放平台设计与实现
这是一篇关于工业智能,预测性维护,知识管理,算法开放,学习平台的论文, 主要内容为随着国家大力推动新一代信息技术与制造业的融合,工业互联网快速发展,预测性维护作为工业智能的关键技术,是典型的大数据、AI赋能制造业的应用场景,市场广阔,是领域内的杀手级应用,而目前掌握预测性维护技术的相关人才却寥寥无几,人才缺口巨大,一个原因是由于行业门槛相对较高,另一个原因是市面上面向工业智能领域的教学平台较少,适合新人上手的更是寥寥无几,而且目前高校内也缺少相应的培养体系和课程。针对此现状,本论文提出面向工业智能的知识管理与算法开放平台设计与实现,为工业智能领域的初学者提供一个知识学习、数据管理、算法体验与开放的一站式学习平台,为工业APP的开发者提供一种新型的端到端的开发模式,引导其快速熟悉行业知识。本论文从软件开发的基本流程出发,给出背景调研、研究现状、需求分析、相关技术研究、平台设计与实现、系统测试与验证等章节,并逐步介绍平台完整的开发流程。功能设计方面,与论文题目相对应,首先设计了用于知识管理的教程与项目模块和数据集模块这两个功能模块,教程与项目模块用于展示工业智能领域相关技术、算法、案例、项目等教程,为初学者提供了一个知识获取的平台。数据集模块提供数据集下载、在线图形化展示、数据集上传功能,为用户提供数据管理功能;此外,平台设计了用于算法开放的算法库模块和API模块,并且基于这两个模块开创性地提出了一种新型的端到端开发模式,工业APP的开发者在本地调试好算法后,在算法库模块上传算法并自动生成API,然后基于API模块的API文档去调用相应算法得到处理结果,这样基于平台提供的类似云端功能,将开发者的算法发布到线上,结合微信小程序等客户端,开发者不需要搭建后端服务器就可以开发自己的工业APP。功能实现方面,平台整体基于Java语言开发,框架采用SSM(Spring+SpringMVC+Mybatis)框架,数据库的使用方面,选择MySQL作为平台存储数据的主要数据库,同时使用Redis存储文件存储路径、训练结果等信息,并选择Redis作为缓存使用。算法计算同时基于Java环境下的Weka和Python环境下的scikit-learn库和tensorflow库,平台使用这些算法库构建了一套算法引擎,支撑平台算法库模块和API模块所有的算法计算功能,同时使用RabbitMq消息队列异步处理复杂计算请求,改善用户体验。
面向工业智能的知识管理与算法开放平台设计与实现
这是一篇关于工业智能,预测性维护,知识管理,算法开放,学习平台的论文, 主要内容为随着国家大力推动新一代信息技术与制造业的融合,工业互联网快速发展,预测性维护作为工业智能的关键技术,是典型的大数据、AI赋能制造业的应用场景,市场广阔,是领域内的杀手级应用,而目前掌握预测性维护技术的相关人才却寥寥无几,人才缺口巨大,一个原因是由于行业门槛相对较高,另一个原因是市面上面向工业智能领域的教学平台较少,适合新人上手的更是寥寥无几,而且目前高校内也缺少相应的培养体系和课程。针对此现状,本论文提出面向工业智能的知识管理与算法开放平台设计与实现,为工业智能领域的初学者提供一个知识学习、数据管理、算法体验与开放的一站式学习平台,为工业APP的开发者提供一种新型的端到端的开发模式,引导其快速熟悉行业知识。本论文从软件开发的基本流程出发,给出背景调研、研究现状、需求分析、相关技术研究、平台设计与实现、系统测试与验证等章节,并逐步介绍平台完整的开发流程。功能设计方面,与论文题目相对应,首先设计了用于知识管理的教程与项目模块和数据集模块这两个功能模块,教程与项目模块用于展示工业智能领域相关技术、算法、案例、项目等教程,为初学者提供了一个知识获取的平台。数据集模块提供数据集下载、在线图形化展示、数据集上传功能,为用户提供数据管理功能;此外,平台设计了用于算法开放的算法库模块和API模块,并且基于这两个模块开创性地提出了一种新型的端到端开发模式,工业APP的开发者在本地调试好算法后,在算法库模块上传算法并自动生成API,然后基于API模块的API文档去调用相应算法得到处理结果,这样基于平台提供的类似云端功能,将开发者的算法发布到线上,结合微信小程序等客户端,开发者不需要搭建后端服务器就可以开发自己的工业APP。功能实现方面,平台整体基于Java语言开发,框架采用SSM(Spring+SpringMVC+Mybatis)框架,数据库的使用方面,选择MySQL作为平台存储数据的主要数据库,同时使用Redis存储文件存储路径、训练结果等信息,并选择Redis作为缓存使用。算法计算同时基于Java环境下的Weka和Python环境下的scikit-learn库和tensorflow库,平台使用这些算法库构建了一套算法引擎,支撑平台算法库模块和API模块所有的算法计算功能,同时使用RabbitMq消息队列异步处理复杂计算请求,改善用户体验。
面向工业智能的知识管理与算法开放平台设计与实现
这是一篇关于工业智能,预测性维护,知识管理,算法开放,学习平台的论文, 主要内容为随着国家大力推动新一代信息技术与制造业的融合,工业互联网快速发展,预测性维护作为工业智能的关键技术,是典型的大数据、AI赋能制造业的应用场景,市场广阔,是领域内的杀手级应用,而目前掌握预测性维护技术的相关人才却寥寥无几,人才缺口巨大,一个原因是由于行业门槛相对较高,另一个原因是市面上面向工业智能领域的教学平台较少,适合新人上手的更是寥寥无几,而且目前高校内也缺少相应的培养体系和课程。针对此现状,本论文提出面向工业智能的知识管理与算法开放平台设计与实现,为工业智能领域的初学者提供一个知识学习、数据管理、算法体验与开放的一站式学习平台,为工业APP的开发者提供一种新型的端到端的开发模式,引导其快速熟悉行业知识。本论文从软件开发的基本流程出发,给出背景调研、研究现状、需求分析、相关技术研究、平台设计与实现、系统测试与验证等章节,并逐步介绍平台完整的开发流程。功能设计方面,与论文题目相对应,首先设计了用于知识管理的教程与项目模块和数据集模块这两个功能模块,教程与项目模块用于展示工业智能领域相关技术、算法、案例、项目等教程,为初学者提供了一个知识获取的平台。数据集模块提供数据集下载、在线图形化展示、数据集上传功能,为用户提供数据管理功能;此外,平台设计了用于算法开放的算法库模块和API模块,并且基于这两个模块开创性地提出了一种新型的端到端开发模式,工业APP的开发者在本地调试好算法后,在算法库模块上传算法并自动生成API,然后基于API模块的API文档去调用相应算法得到处理结果,这样基于平台提供的类似云端功能,将开发者的算法发布到线上,结合微信小程序等客户端,开发者不需要搭建后端服务器就可以开发自己的工业APP。功能实现方面,平台整体基于Java语言开发,框架采用SSM(Spring+SpringMVC+Mybatis)框架,数据库的使用方面,选择MySQL作为平台存储数据的主要数据库,同时使用Redis存储文件存储路径、训练结果等信息,并选择Redis作为缓存使用。算法计算同时基于Java环境下的Weka和Python环境下的scikit-learn库和tensorflow库,平台使用这些算法库构建了一套算法引擎,支撑平台算法库模块和API模块所有的算法计算功能,同时使用RabbitMq消息队列异步处理复杂计算请求,改善用户体验。
本文内容包括但不限于文字、数据、图表及超链接等)均来源于该信息及资料的相关主题。发布者:代码向导 ,原文地址:https://bishedaima.com/lunwen/50413.html